Variability in protist grazing and growth on different marine Synechococcus isolates.
نویسندگان
چکیده
Grazing mortality of the marine phytoplankton Synechococcus is dominated by planktonic protists, yet rates of consumption and factors regulating grazer-Synechococcus interactions are poorly understood. One aspect of predator-prey interactions for which little is known are the mechanisms by which Synechococcus avoids or resists predation and, in turn, how this relates to the ability of Synechococcus to support growth of protist grazer populations. Grazing experiments conducted with the raptorial dinoflagellate Oxyrrhis marina and phylogenetically diverse Synechococcus isolates (strains WH8102, CC9605, CC9311, and CC9902) revealed marked differences in grazing rates-specifically that WH8102 was grazed at significantly lower rates than all other isolates. Additional experiments using the heterotrophic nanoflagellate Goniomonas pacifica and the filter-feeding tintinnid ciliate Eutintinnis sp. revealed that this pattern in grazing susceptibility among the isolates transcended feeding guilds and grazer taxon. Synechococcus cell size, elemental ratios, and motility were not able to explain differences in grazing rates, indicating that other features play a primary role in grazing resistance. Growth of heterotrophic protists was poorly coupled to prey ingestion and was influenced by the strain of Synechococcus being consumed. Although Synechococcus was generally a poor-quality food source, it tended to support higher growth and survival of G. pacifica and O. marina relative to Eutintinnis sp., indicating that suitability of Synechococcus varies among grazer taxa and may be a more suitable food source for the smaller protist grazers. This work has developed tractable model systems for further studies of grazer-Synechococcus interactions in marine microbial food webs.
منابع مشابه
Effects of UV-A (320 to 399 Nanometers) on Grazing Pressure of a Marine Heterotrophic Nanoflagellate on Strains of the Unicellular Cyanobacteria Synechococcus spp.
In the open ocean, where turbidity is very low, UV radiation may be an important factor regulating interactions among planktonic microorganisms. The effect of exposure to UV radiation on grazing by a commonly isolated marine heterotrophic nanoflagellate, Paraphysomonas bandaiensis, on two strains of the cyanobacteria Synechococcus spp. was investigated. Laboratory cultures were exposed to a ran...
متن کاملGrowth and grazing on Prochlorococcus and Synechococcus by two marine ciliates
The two most abundant marine autotrophic prokaryotes, Prochlorococcus and Synechococcus, often have different distributions in the ocean. For example, Synechococcus is restricted to the first 100 m, whereas Prochlorococcus extends much deeper in oligotrophic waters. This is in part explained by differences in adaptation to nutrient and light regimes. However, they could also be subjected to dif...
متن کاملGrazer and viral impacts on microbial growth and mortality in the southern California Current Ecosystem
Protistan grazers and viruses are major agents of mortality in marine microbial communities with substantially different implications for food-web dynamics, carbon cycling and diversity maintenance. While grazers and viruses are typically studied independently, their impacts on microbial communities may be complicated by direct and indirect interactions of their mortality effects. Using a modif...
متن کاملSize-specific growth and grazing rates for picophytoplankton in coastal and oceanic regions of the eastern Pacific
Estimates of growth and grazing mortality rates for different size classes and taxa of natural picophytoplankton assemblages were measured in mixed-layer experiments conducted in 3 regions of the eastern Pacific: the California Current Ecosystem, Costa Rica Dome, and equatorial Pacific. Contrary to expectation, size-dependent rates for cells between 0.45 and 4.0 μm in diameter showed no systema...
متن کاملPhylogenetic diversity of Synechococcus in the Chesapeake Bay revealed by Ribulose-1,5- bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) sequences
In order to understand how Synechococcus in the estuarine environment (Chesapeake Bay) are phylogenetically related to other known marine Synechococcus, partial rbcL gene sequences from 25 strains of Synechococcus spp. isolated from estuarine, coastal and oceanic waters were sequenced. The rbcL gene phylogeny showed that Chesapeake Bay Synechococcus isolates together with other marine Synechoco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 77 9 شماره
صفحات -
تاریخ انتشار 2011